objective
SYSTEMS, INC.

Javascript Object Notation (JSON) Encoding Rules for ASN.1

Objective Systems, Inc.

December 25, 2018

Copyright Notice

Copyright ©2018 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is
distributed in its entirety and that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding this document may be submitted via electronic
mail to info@obj-sys.com.

mailto:info@obj-sys.com

Table of Contents

SUIMIMIATY ...ttt et e et e et e e st e e e sateeesaseeesssee e ssaeenssaeenssaeansseeansseeanssaesennssseeeseennsnees 3
NOIMALIVE REIETEINCES. ... ittt ettt ettt e st e e e sabe e bt e sabeeseeenbeeeenes 4
GENETAL RUIES. ...ttt sttt et et e bttt e s bt et e st eeeeneeees 5
ENcoding On the WITC......co.eiiiiiiiiiiiiieeeeee ettt st st st 5
TSONVAEIUE. ...ttt ettt e b e et b e st e e bt e e st e e sttt e e sbbeeenabeeeas 5
JSONNESIEAVALUE.eouiiiiiiieiiiie ettt et sttt et b e e st e st e et e eanees 6
MaPPING LACNEITICTS.eeiiiiieiiieciie et et e et e et e e et e e e st eesnsaeesnseeessseeesnnssnaeesennnsenes 6
ENCOAING DY ASN.T TYPC..niiiiiiiieiteteeteet ettt sttt ettt sb e bt et be et et be e e 8
BOOLEAN. ...ttt ettt ettt h et e e at e s st et e ese e e st e bt emteesee st emteenee st entesneebeenseenneeennnes 8
INTEGER ...ttt ettt et a e bttt s bt e bttt s bt et e et sae e bt e ateenbeeeanes 8
ENUMERATED......ccutttiettee ettt ettt et e a ettt e et e bt et e e st e bt entesaeenbeenneenneeennnes 8
REAL ...ttt ettt et e h e bt et s h e bt et h bttt h e bt et h et et sbe bt 8
BIT STRING ...ttt ettt ettt et et st e bt e st e e st e bt eabees e e bt enseeseesteennneennteennneas 8
OCTET STRING ..ottt ettt st b ettt s bt et satesbe et e eatesbeebesatesbeeeanees 9
INULL ettt ettt et et e h et e st e s et et e em e e e st et e emeees e e bt enseea e et e enteenbeeenteeenneeeneeennee 9
SEQUENCE and SETooiiiiiiiiieitie ettt ettt sttt ettt et set e e seteesiteesaaeeeas 9
SEQUENCE OF and SET OFouiiiiieieeeee ettt sttt e 10
CHOICE. ...ttt ettt h et s at e bttt e a e bt et sat e s bt et e e bt e e bt ebeeebeeeneeenee 10
L@ o) STe A (6 153 118 <) PSSP 11
Relative ObJect IAENTITIET.cc.eiiiiiiieeie ettt et e e et eeeaneee s 11
2 Ee o 1CTa a5 T S SPPR 11
EXEOTINAL ...ttt ettt ettt e e h e e bt e ae e bt e bt e e nbe e bt e snteeneeas 11
TAIMIC. ..ttt a e et e bt et e eh e e e a bt e bt e ea bt e e b et e bt e bt e e a bt e bt e et e e bt e et e e eateee s 11
Restricted Character SEINE.ooiiiiiiiirieieeieeee ettt st sb et sbe et s enee s 11
Unrestricted Character StIINE.........couiieiiieeiiie ettt eetee et eesereeeareesareesbaeesseeesnssaeeeesennssees 11
Generalized time, Universal time, Object DeSCIIPIOT..........cvutiruiriiriiiiriereeeeeeeie e e 12
L@ 3157 1 T) o1 USSP PSR 12
EXAMIPIC. ...ttt ettt et ettt bt e et e e bt e e bt e nbe e e e nbeeeenbeeeenbeeeaae 13
COomMPATISON t0 X097 ..o ittt et e et e et e e et e e sbaeesssee e ssee e ssaeessaeansseeensssaeaesensssneeens 17

©2018 Objective Systems, Inc. 2

Summary

This document is of interest only for historical purposes. It has been supplanted by ITU-T X.697 JSON
Encoding Rules (JER). Differences between the encoding rules specified in this document and those
specified in X.697 are noted in the section Comparison to X.697.

This document specifies rules for encoding values of ASN.1 types using JSON. These encoding rules
have been specified by Objective Systems, Inc. This specification was influenced by ITU-T X.693
XML Encoding Rules (XER).

©2018 Objective Systems, Inc. 3

Normative References

The following references are considered normative for this specification.

ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN. 1 specifications.

ECMA-262 (2011), ECMAScript Language Specification

IETF RFC 4627, The application/json Media Type for JavaScript Object Notation (JSON)

©2018 Objective Systems, Inc.

General Rules
This section describes the general rules for encoding values of ASN.1 types in JSON.

This document uses productions from ITU-T X.680 as much as possible. Note in particular that
xmlhstring and xmlbstring are used. There is nothing particularly "XML" about these productions
and they conveniently describe the desired string.

QUOTEMARK 1s used wherever a quotation mark (") appears in the JSON text.

Encoding On the Wire

JSON values are strings of Unicode characters that conform to the JSON grammar. Thus, JSON
encoding rules inherently specify a character-based encoding. However, for transmission, those
characters will need to be represented in bytes. For that purpose, this specification follows IETF RFC
4627. According to RFC 4627, JSON shall be encoded in one of the following Unicode character
encodings: UTF-8, UTF-16BE, UTF-16LE, UTF-32LE, UTF-32BE. The first four octets of an
encoding can be examined to determine the specific character encoding (as explained in RFC 4627
section 3). Support for UTF-8 encoding is treated as mandatory and support for the other character
encodings as optional.

JSONValue

The JSON encoding of an ASN.1 value shall be the gsonvalue for that value. Every ASN.1 abstract
value has an associated JsoNvalue. Every JsoNvalue must be a valid JSON value'.

JSONValue ::=
JSONBooleanValue |
JSONIntegerValue |
JSONEnumeratedValue |
JSONRealValue |
JSONBitStringValue |
JSONOctetStringValue |
JSONNullValue |
JSONSequenceValue |
JSONSequenceOfvValue |
JSONChoiceValue |
JSONObjectIdentifierValue |
JSONRelativeOIDValue

IRIValue |

1 This is important for the definition of JSONNamedvalue

©2018 Objective Systems, Inc.

RelativeIRIValue |
JSONEmbeddedPDVValue |
JSONExternalValue |

JSONTimeValue |
JSONRestrictedCharacterStringValue |
JSONUnrestrictedCharacterStringvValue |
JSONOpenTypeValue

IRIValue and RelativeIRIValue are defined in X.680. The remaining alternatives for Jsonvalue are
defined in this document.

A Jsonvalue may contain insignificant whitespace as permitted by JSON, viz. around the delimiter
characters: {}[]:,

JSONNestedValue

The specification for JsoNOpenTypevalue, provides two alternatives for encoding an open type. The
first alternative (JsoNNestedvalue) embeds the JSON text for the open type in a JSON object. The
second alternative embeds a hexadecimal representation of the JSON text for the open type in a JSON
string. These alternatives can be easily distinguished from each other, since one is a JSON object and
the other is a JSON string. Within JavaScript, a programmer can use "instanceof" to determine whether
the value is an Object or not (if not, then assume string).

JSONNestedValue ::=
"{" QUOTEMARK "value" QUOTEMARK ":" JSONValue "}"

JSONNestedValue serves much the same purpose as xMLTypedvalue does in XER. xMLTypedvalue,
however, includes the ASN.1 type name, whereas JsonNestedvalue does not. This is intentional. It is
not always very clear what name should appear in an xMLTypedvalue and in some cases the name is
not useful for decoding anyway. JsonNNestedvalue does not include the ASN.1 type name to avoid
confusion and to prevent someone from incorrectly relying on it to determine the type of the encoded
value.

Mapping Identifiers

Names used in the JSON should be valid JavaScript identifier names®. Using something other than a
valid JavaScript identifier name for a property name forces programmers to use object["name"|
notation rather than object.name notation and may also prevent some optimizations in the JavaScript
engine.

ASN.1 identifiers are mapped to JSON identifier names when encoding sequence, set, and choice

2 Identifiers cannot be reserved words, but identifier names can be. For example, "break" is a reserved word but is a valid
property name. So you can use either myobject.break or myobject["break"].

©2018 Objective Systems, Inc. 6

types. Not every ASN.1 identifier is a valid JSON identifier name. An ASN.1 identifier is also a valid
JavaScript identifier name if and only if it does not contain any hyphens. This makes the conversion
rule simple:

* convert any hyphen into an underscore

This maps every possible ASN.1 identifier to a distinct JavaScript identifier name. Conveniently,
ASN.1 identifier names may not contain underscores. Thus every underscore in the transformed
identifier comes from applying the above rule.

The result of the above mapping produces a jsonasnlidentifier from an ASN.1 identifier.

©2018 Objective Systems, Inc. 7

Encoding by ASN.1 Type

BOOLEAN

JSONBooleanValue ::= "true" | "false"
INTEGER

JSONIntegerValue ::= SignedNumber

INTEGER types with named numbers receive no special treatment. This seemed preferable on the
assumption that the JSON text would be operated on by JavaScript directly.

ENUMERATED

JSONEnumeratedValue ::= number

The encoded number shall be the value associated with the enumerated value.

REAL
JSONRealValue ::=

NumericRealValue

QUOTEMARK JSONSpecialRealValue QUOTEMARK

JSONSpecialRealValue ::=

"NaN" "NEGATIVE INFINITY" "POSITIVE INFINITY"

The alternatives for JsoNSpecialRealvalue correspond to the names used in JavaScript for these
values. There does not seem to be any method in JavaScript that takes these strings and returns a
corresponding Number value (e.g. Number. NEGATIVE INFINITY). In fact, the parseFloat method
will return Number.NaN for any string that does not begin with a number. However, representing these
special values as strings is the best that can be done under JSON.

BIT STRING

JSONBitStringValue ::= QUOTEMARK xmlbstring QUOTEMARK

©2018 Objective Systems, Inc. 8

BIT STRING types having named bits receive no special handling. An enhancement would be to allow
a value with only named bits set to have an alternative representation that used the names of the named
bits in the JSON value. It is not clear whether a JSON object or JSON array would be more convenient
to a Javascript programmer. Such a feature did not seem especially worthwhile.

BIT STRING types with contents constraints receive no special handling. An enhancement would be to
allow a JSONNestedvalue representation.

Note that a contents constraint without ENCODED By would imply that the value of the bit string is the
JSON encoding of some abstract value of the specified type. That means it should be the Unicode
encoding (UTF-8, UTF-16LE, UTF-16BE, etc.) of a gJsonvalue. The particular Unicode encoding
used shall be the same as that used for the bit string itself.

OCTET STRING

JSONOctetStringValue ::= QUOTEMARK xmlhstring QUOTEMARK

OCTET STRING types with contents constraints receive no special handling. An enhancement would be
to allow a JsoNNestedvalue representation.

Note that a contents constraint without ENCODED BY would imply that the value of the octet string is the
JSON encoding of some abstract value of the specified type. That means it should be the Unicode
encoding (UTF-8, UTF-16LE, UTF-16BE, etc.) of a Jsonvalue. The particular Unicode encoding
used shall be the same as that used for the octet string itself.

NULL

JSONNullValue ::= "null"

SEQUENCE and SET

A sequence value is modeled as a JSON Object’. There is no difference in the encoding for a set and
sets will not be referred to further.

JSONSequenceValue ::=

"{" "}"
| {" JSONComponentValueList "}"

3 The choice of JSON object instead of JSON array was to make the encoding more friendly to Javascript programmers
and to human readers.

©2018 Objective Systems, Inc. 9

JSONComponentValuelList ::=

JSONNamedValue
JSONComponentValueList "," JSONNamedValue
JSONNamedValue ::= QUOTEMARK jsonasnlidentifier QUOTEMARK ":" JSONValue

There shall be a JsoNNamedvalue in the JsoNSequencevalue for every NamedType in the sequence
which is not marked OPTIONAL or DEFAULT.

Decoders must be prepared to handle an unknown JsoNNamedvalue resulting from extensions.

Note especially that a JSON object's name-value pairs are unordered. Since X.680 25.14 requires the
identifiers to be distinct, this is not a problem. Decoders must be prepared to accept the name-value
pairs in any order.

The jsonasnlidentifier will be determined as described in the section on mapping identifiers.

SEQUENCE OF and SET OF

A sequence-of value is modeled as a JSON array. There is no difference in the encoding for a set-of
and set-of's will not be referred to further.

JSONSequenceOfValue ::=

n [" "1 n

"[" JSONValueList "]1"

JSONValuelList ::=
JSONValue
JSONValueList "," JSONValue

CHOICE

A choice value is modeled as a JSON Object having exactly one or zero properties (a choice type with
no alternatives produces zero properties).

JSONChoiceValue ::=

"{" "}"
"{" JSONNamedValue "} "

For JsoNNamedvalue, see the section on SEQUENCE.

©2018 Objective Systems, Inc. 10

Within JavaScript, a programmer can simply check each of the possible properties and find which of
them is not undefined.

Object Identifier

JSONObjectIdentifierValue ::= QUOTEMARK XMLObjectIdentifierValue QUOTEMARK

Relative Object Identifier

JSONRelativeOIDValue ::= QUOTEMARK XMLRelativeOIDValue QUOTEMARK
Embedded-pdv
JSONEmbeddedPDVValue ::= JSONSequenceValue

The encoded value for an embedded PDV shall be the encoding of the sequence given in X.680 36

External
JSONExternalValue ::= JSONSequenceValue

The encoded value for an external value shall be the encoding of the sequence given in X.680 37

Time
JSONTimeValue ::= tstring

N.B. tstring is defined in X.680 and includes opening and closing quotes

Restricted Character String
JSONRestrictedCharacterStringValue ::= QUOTEMARK characters QUOTEMARK

"characters" will be each of the characters from the string. Any characters which cannot be represented
directly in a JSON string value will be represented using one of the allowable escape sequences for a
JSON string.

Unrestricted Character String
JSONUnrestrictedCharacterStringValue ::= JSONSequenceValue

The encoding for an unrestricted character string shall be the encoding of the sequence given in X.680

©2018 Objective Systems, Inc. 11

44.5.

Generalized time, Universal time, Object Descriptor

These ASN.1 types are all defined in terms of ASN.1 restricted character string types. They shall be
encoded as such.

Open Type

There are two alternatives for encoding an open type, similar to the handling of open type in XML, as
specified for xMLOpenTypeFieldval (see X.681).

JSONOpenTypeValue ::=
JSONNestedValue
QUOTEMARK xmlhstring QUOTEMARK

If the JsonNNestedvalue alternative is used, then its Jsonvalue shall be the Jsonvalue corresponding
to the actual type.

If the second alternative of JsONOpenTypevalue is used, then the xm1hstring shall be the hexadecimal
representation of an encoding of the abstract value according to some unspecified encoding rules. This
alternative is not generally recommended but can be useful when decoding from some other encoding
rules and encoding to JSON.

©2018 Objective Systems, Inc. 12

Example

JERExample

DEFINITIONS

AUTOMATIC TAGS

:= BEGIN
Records ::= SEQUENCE OF record Record
Record ::= SEQUENCE ({

mainInfo SEQUENCE ({

}

a-boolean BOOLEAN,

an-integer INTEGER,

status ENUMERATED {new, active, closed},

a-real REAL,

bitstr BIT STRING,

flags-in-bitstr BIT STRING (CONTAINING (Flags)),
octstr OCTET STRING,

flags-in-octstr OCTET STRING (CONTAINING (Flags)),
nothing NULL,

whichone ThisOrThat,

message UTF8String

OPTIONAL,

real?2 REAL OPTIONAL,

int2 INTEGER DEFAULT 10,

an-open-type TYPE-IDENTIFIER.&Type OPTIONAL

Flags

::= SEQUENCE ({

flagl BOOLEAN,

flag2 BOOLEAN

}

ThisOrThat ::= CHOICE {

this INTEGER,

that UTF8String

©2018 Objective Systems, Inc.

13

--The value that will be shown in JSON.
theValue Records ::= {
record {
mainInfo {
a-boolean TRUE,
an-integer 9,
status active,
a-real 34.58,
bitstr '01110110111'B,
flags—-in-bitstr CONTAINING {flagl TRUE, flag2 FALSE},
octstr '2BEO2BE'H,
flags—-in-octstr CONTAINING { flagl TRUE, flag2 FALSE},
nothing NULL,
whichone this : 25,
message "smell the roses"
by
int2 29,
an-open-type INTEGER(0..20) : 16
by
record {
real?2 PLUS-INFINITY,
an-open-type INTEGER(0..20) : 16

END

The JSON encoding would be a Unicode encoding (UTF-8, say) of the following text:
[

{ "mainInfo"

{

"a boolean" : true,
"an_ integer" : 9,
"status" : 1,

"a real" : 34.58,

©2018 Objective Systems, Inc.

"bitstr™ : "01110110111",

"flags_in bitstr"
"0111101100100010011001100110110001100001011001110011000100100010001110100111010001
11001001110101011001010010110000100010011001100110110001100001011001110011001000100
01000111010011001100110000101101100011100110110010101111101",

"octstr" : "2BEO2BE",

"flags_in octstr"
"7TB22666C616731223A747275652C22666C616732223A66616C73657D",

"nothing" : null,
"whichone™ : { "this" : 25 },
"message" : "smell the roses"
by
"int2" : 29,
"an open type" : "3136"
by
{
"real2" : "POSITIVE INFINITY",
"an open_ type" : { "value" : 16 }

NOTE 1: The character sequence:
{"flagl":true,"flag2":false}
which is the JsoNvalue for a Flags value, encoded in UTF-8 is:
hexadecimal: 7B22666C616731223A747275652C22666C616732223A66616C73657D

binary:
01111011001000100110011001101100011000010110011100110001001000100011101001110100011
10010011101010110010100101100001000100110011001101100011000010110011100110010001000
1000111010011001100110000101101100011100110110010101111101

These strings appear in the "flags in_bistr" and flags in_octstr" fields.

NOTE 2: The character sequence:
16

which is the JsoNvalue for an INTEGER value of 16, encoded in UTF-8 is:
hexadecimal: 3136

In the above example, you can see a few things demonstrated, in addition to the encoding of various
ASN.1 types:

©2018 Objective Systems, Inc. 15

* identifier mapping ("-" becomes " ")

* encoding of open type using both alternatives. A single message would most likely use only
one alternative, but both are shown here for comparison.

©2018 Objective Systems, Inc.

16

Comparison to X.697

This section compares the encoding rules specified in this document with those specified in [ITU-T
X.697-201710. This section might not mention every difference and does not comprehensively
describe the differences.

* X.697 uses ASN.1 identifiers without modification in the encoding. It does not convert
hyphens to underscores.

* X.697 uses the identifier for ENUMERATED rather than the associated (numeric) enumerated
value.

* X.697 encodes REAL values differently. It allows for a distinction between base2 and basel0
REAL values (which are two distinct sets of abstract values), makes use of constraints in
determining the encoding, encodes -0 as a string, and uses different strings for the inifinities.

* X.697 encodes BIT STRING differently. The encoding varies based on what constraints are
applied. It does not use xmlbstring at all.

* X.697 encodes certain restricted character string types differently, as if the strings were octet
strings. These include: TeletexString, T61String, VideotexString, GraphicString, and
GeneralString.

* X.697 encodes an open types as if encoding the actual type for the open type. It does not wrap
the open type nor does it allow for a hexadecimal string in order to carry non-JER-encoded
data.

* X.697 allows uses to alter the encoding by using encoding control notation. Our proprietary
rules did not provide this feature. This is not an issue when moving from our propriety rules to
X.697.

©2018 Objective Systems, Inc. 17

	Summary
	Normative References
	General Rules
	Encoding On the Wire
	JSONValue
	JSONNestedValue
	Mapping Identifiers

	Encoding by ASN.1 Type
	BOOLEAN
	INTEGER
	ENUMERATED
	REAL
	BIT STRING
	OCTET STRING
	NULL
	SEQUENCE and SET
	SEQUENCE OF and SET OF
	CHOICE
	Object Identifier
	Relative Object Identifier
	Embedded-pdv
	External
	Time
	Restricted Character String
	Unrestricted Character String
	Generalized time, Universal time, Object Descriptor
	Open Type

	Example
	Comparison to X.697

