objective

SYSTEMS, INC.

CSTA Phase 3 C++ API Evaluation Kit for Windows

User’s Guide

Objective Systems, Inc. June 2019

Introduction

The Objective Systems’ CSTA Phase 3 C++ API Evaluation Kit for Windows is a collection of classes for
encoding and decoding messages from the CSTA Phase 3 ASN.1 specification using the Basic Encoding
Rules (BER) as defined in ITU standard X.690.

This API kit has been developed in the C++ programming language. The Objective Systems ASN1C
compiler is used (by you, using supplied makefiles or project files) to generate the structures and
encode/decode functions. These are then compiled (by you, using supplied makefiles or project files) using
any of the compilers for which an ASN1C run-time collection exists. Since this kit is an evaluation kit, you
must have a copy of the ASN1C software. If you don't have ASN1C, you can download a 30-day trial
version at http://www.obj-sys.com/asn1-compiler.shtml.

Contents of the Package

The following diagram shows the directory tree structure that comprises the C++ CSTA phase 3 evaluation
kit package:

cstal3fw

|

+- build

|

+- build di1l
|

+- doc

|

+- 1lib

|

+- specs

|

+- proprietary
|

+- src

|

+- sample
The purpose and contents of the various subdirectories are as follows:

e build: Contains the makefile to build the CSTA and ACSE runtime library for the CSTA phase 3
and ACSE source code APIL.

e build dll: Contains the makefile to build the dlI version of the CSTA and ACSE libraries.

e lib — Contains following libraries and DLLs.

cstap3 a.lib Contains (after you build it) CSTA phase 3 protocol (ECMA-285 /ISO
18052) and ROSE protocol (ITU-T X.880 /ISO 13712-1)
implementation in a static library.

acse_a.lib Contains (after you build it) ACSE protocol (X.227 /ISO 8650) and
related ASN.1 definition implementation in a static library.
cstap3.dll Contains (after you build it) CSTA phase 3 protocol (ECMA-285 / ISO

18052) and ROSE protocol (ITU-T X.880 / ISO 13712-1)
implementation in a DLL. There is also an accompanying cstap3.1lib
symbol table file.

acse.dll Contains (after you build it) ACSE protocol (X.227 /ISO 8650) and
related ASN.1 definition implementation in a DLL. There is also an
accompanying acse.lib symbol table file.

e src — Contains the source code for the CSTA phase 3, ROSE, ACSE, Information Framework and
UsefulDefinition ASN.1 specifications that are generated (by you) using the ASN1C compiler.

e doc — Contains this document

e specs — Contains the CSTA (ECMA-285 /ISO 18052), ROSE (X.880) , ACSE (X.227),
Information Framework(X.501), and UsefulDefinitions (X.501) ASN.1 specifications that were
used in the compilation.

e sample — Contains sample programs that illustrate how to use the API.

Getting Started

The package is delivered as a zip archive that should be unpacked into one of the cpp folders of your
ASNI1C installation. Which folder you choose depends on which compiler you want to use to build the
software. The folder named just cpp is for the default version of Visual Studio for your version of the
ASNIC SDK. You can determine which version of Visual Studio is the default by looking at the cpp_vs*
folders in your SDK installation. The version of Visual Studio that is not mentioned in one of those folders
is the default version. So if you want to use the default version of Visual Studio, you would unpack the zip
into the cpp folder. If, on the other hand, you want to use a different version of Visual Studio, you would
unpack the zip into the appropriate cpp_vs* folder. All makefiles and internal sample programs use
relative directory paths, so it is not necessary to create any type of top-level environment variables.

The libraries must be compiled before use. It is necessary to have a working copy of ASN1C already
installed on the system in order to generate the required source code. Running nmake in the build
subdirectory will generate the source code, compile it, and package it into the library files described above.
Alternatively, running nmake in the build dll subdirectory will package the code into the DLL files
described above You need to use a command window that is appropriate for the compiler you're using.

The code can be tested by executing the sample programs in the sample subdirectory. Most of these sample
programs consist of a reader and writer program. The writer program populates a data variable with some
data, calls an encode function, and then writes the encoded byte stream to a file. The reader program reads
this file, decodes the data into a C++ structure, and then prints the decoded results.

The kit also includes Visual Studio solution and project files that build the libraries and DLLs as well as all
of the samples. As of this writing, the files are Visual Studio 2010 files. If you're using a Microsoft
compiler older than Visual Studio 2010, you must use the makefiles to do the building. If you're using a
Microsoft compiler newer than Visual Studio 2010, the solution and project files should migrate forward if
you open them in the IDE of the newer compiler.

CSTA Explicit Association

The CSTA protocol operates within an application association (otherwise known as a CSTA association or
association) as provided by IS 8649 (ACSE). This association can be either:

e an implicit association achieved via an off-line agreement or

e an explicit association realized through the use of ACSE.

The initialization sequence of explicit associations is described in the following sections. Explicit/dynamic
association can be realized by using acse a.lib or acse.dll (ACSE ASN.1 implementation) API.

ACSE service or application context can be defined as follows:

A-ASSOCIATE: This confirmed service is used to initiate an application association between
application entities

1.

The A-ASSOCIATE service is initialized by sending a message of type

ASNIT AARQ apdu and waiting for a response. To generate an AARQ-apdu message,
the user will need to set the application context name to the CSTA Phase 3 object
identifier value. The ACSE-Request sample program can be used as a reference.

The response will be an ASNIT _AARE_apdu type. The responder replies with the
accepted CSTA version for connection or reject reason. The protocol version to be used
is selected by identifying the highest CSTA version that is common to both systems. The
ACSE-Response sample program can be used as a reference.

A-RELEASE: This confirmed service is used to release an application association between
application entities without loss of information.

1.

The A- RELEASE service is initialized by sending a message of type

ASNIT RLRQ apdu and waiting for a response. The sample program function
encodeACSEReleaseRequest() in the ACSE Request directory can be used as a reference
to create the release request.

The response will be a message of type ASNIT RLRE apdu. The sample program
function encodeACSEReleaseResponse() in the ACSE Response directory can be used as
a reference to create the release request.

A-ABORT: This unconfirmed service causes the abnormal release of an association with a
possible loss of information.

The A-ABORT service is initialized by sending a message of type ASNIT _ABRT apdu.
The sample program function encodeACSEAbort() in the ACSE Request and
ACSE Response directory can be used as reference.

Encoding CSTA Messages with ROSE Header

The CSTA specification specifies a two-phase protocol using ROSE for the common headers. In order to
encode a message of this type, the following steps must be performed:

1. A CSTA base message type must be encoded, and

2. The results must be plugged into a ROSE message structure and then this is encoded to produce the
finished message.

The user should use the writer program (writer.cpp) in one of the sample directories as a guide when
reading the rest of the procedure.

Encoding a CSTA message

To encode a CSTA message component, a variable of one of the various CSTA class structures must first
be populated with data. These structures normally correspond to the ARGUMENT or RESULT types
specified in a CSTA Phase 3 Information Objects for the OPERATION class. For example, the following
information object specifies the messages that are exchanged for the makeCall operation:

makeCall OPERATION ::= {
ARGUMENT MakeCallArgument
RESULT MakeCallResult
ERRORS {universalFailure}

CODE local : 10
}

In this information object, the CODE field defines the value “local: 10” to identify a makeCall operation.
The name “local” is actually the name of a CHOICE in the ASN.1 specification that stipulates that the
operation code will be an integer. The ARGUMENT field defines the MakeCallArgument type, which can
be used to invoke the makeCall operation. The RESULT field defines the MakeCallResult type, which is
used to return the result of the makeCall operation. The ERRORS field defines another information object
that contains the error type that can be produced in a makeCall operation.

Table 1 is developed from the CSTA phase 3 OPERATION class information object definitions. This table
contains the operation name, operation code, argument type and result type for each operation. To
encode/invoke the operation, the user must set the operation code value and encode the argument type
defined in this table. To decode the operation, the user must check the operation code value and decode the
corresponding result type or argument type. For example, for the makeCall operation, the user will need to
set the ASNIT CSTA_ROSE _PDU _invoke.operationCode value to local:10 and encode the

ASNIT MakeCallArgument type in ASNIT CSTA_ROSE _PDU _invoke argument open type field.

In this case, MakeCallArgument is encoded and sent as a request message (or invoke as it is known in
ROSE). The entity receiving this message is then required to respond with the result message of

MakeCallResult type or one of the defined errors in the universalFailure information object.

The sample program in the makeCall Request directory shows how to encode a MakeCallArgument:

MakeCallArgument ::=
SEQUENCE
{callingDevice DevicelID,
calledDirectoryNumber CalledDevicelD,
extensions CSTACommonArguments OPTIONAL}

Encoding “cSTAEventReport” Operations:

“cSTAEventReport” operation has the special case of event, which is different from other operations. To
encode the event the user will need to encode the CSTAEventReportArgument type defined in the table 1; e.g,
for the “delivered” event, user will need to set the ASNIT CSTAEventReportArgument as follows.

The following is a snippet from the writer.cpp “delivered Event” directory sample program showing how
the value is populated:

/* delivered event */
ASN1IT DeliveredEvent delivered;
//populate value for delivered data structure

ASNIT CallEvent callevent;
callevent.t = T CallEvent deliveredEvent;
callevent.u.deliveredEvent = &delivered;

/* CSTAEventReportArgument */

ASNIT CSTAEventReportArgument eventReportArg;

ASNI1OCTET datal[] = { 0x99 };
eventReportArg.crossReflIdentifier.numocts = 1;
eventReportArg.crossRefldentifier.data = data;
eventReportArg.eventSpecificInfo.t = T EventSpecificInfo callEvent;
eventReportArg.eventSpecificInfo.u.callEvent = &callevent;

1. Encoding a ROSE Header
Once the argument is populated and encoded, the ROSE header must be added. This is a common header
that is added to all messages that support the ROSE protocol. In the case of a ROSE OPERATION, a
ROSE Invoke message must be sent to the other entity.

The ROSE header required to send an invoke message consists of 4 fields:

1. Invoke ID: this is an arbitrary identifier that acts as a “handle” for matching responses to requests

when messages are exchanged. Any result or error received in response to this invoke request will

contain this identifier value.

2. Linked ID: this is another Invoke ID that is used when a sub-operation within the existing
operation is initiated. The Linked ID is the Invoke ID of the parent (i.e. the encapsulating)
operation.

3. Operation Code: this identifies the operation to the receiving entity. Table 1 can be used to find
out the operation code value for a particular operation. For example, the makeCall operation
corresponds to the “local : 10” value.

4. Message Data: this is an open type. The CSTA encoded message data is placed in this open type

field. Table 1 can be used to find out the type of message that should be used for a particular
operation. For example, the makeCall operation corresponds to the MakeCallArgument type.

The following is a snippet from the writer.cpp sample program showing how the header is added:

/* Populate header structure */

invoke.m.argumentPresent = 1;

invoke.invokeId.t = T InvokelId present;

invoke.invokeId.u.present = 1; /* arbitrary number: should be unique */
invoke.opcode.t = T Code local;

invoke.opcode.u.local = 10; /* “makeCall” operation code */

/* This is where we get the previously encoded message component */
invoke.argument.numocts = msglen;
invoke.argument.data = (ASN1OCTET*) encodeBuffer.getMsgPtr();

pdu.t = T CSTA ROSE_PDU invoke;
pdu.u.invoke = &invoke;

The header identifies the operation to be performed (opcode = 10 = makeCall) and assigns a unique invoke

identifier. This invoke identifier serves as a session ID that can be used to match requests with responses if

asynchronous communications are used. The last part of the populate logic gets the previously encoded
message component from encoding the make call argument data. This is the open type onto which the
ROSE header is prepended.

Decoding CSTA Messages

CSTA messages are decoded by reversing the procedure that was used to encode them. In other words, the
following two distinct decode operations must be performed:

1.

2.

The ROSE header must be decoded, and

The CSTA message type must be decoded

This is the inverse of the encoding procedure presented earlier. The user should use the reader program
(reader.cpp) in one of the samples as a guide when reading the rest of the procedure.

The procedure to decode a complete CSTA message is as follows:

1.

2.

Read an encoded message from an input stream.

Create an ASN1BERDecodeBuffer object to wrap the message buffer that the message was read
into.

Create a CSTA_ROSE PDU object and use it in conjunction with the decode buffer object created
above to decode the header.

The header fields can now be examined. An application will first check Invoke ID to find out the
response for different sessions. For our example, the value of the Invoke ID field should be “17,
which is random unique number we have set during encode procedure. Then to identify the
operation, the operation code value is checked. This should be equal to “local:10” for a
result/error for our invoke request.

Create a second ASN1BERDecodeBuffer object using the open type data contained in the ROSE
header structure as the message source.

Create the specific CSTA message type object based on the operation code value and

corresponding result type from Table 1. Use this result type decode method to decode the CSTA
message component.

Table 1: Operation Table for CSTA phase 3

Operation or Operation

Information Object identifier |Operation Invoke type Operation Result type
acceptCall local: 214 | AcceptCallArgument AcceptCallResult

alternateCall local: 1 AlternateCallArgument AlternateCallResult
answerCall local: 2 AnswerCallArgument AnswerCallResult
associateData local; 230 | AssociateDataArgument AssociateDataResult
attachMediaService local: 244 | AttachMediaServiceArgument AttachMediaServiceResult
buttonPress local: 260 | ButtonPressArgument ButtonPressResult

callBack local; 215 | CallBackArgument CallBackResult
callBackMessage local: 216 | CallBackMessageArgument CallBackMessageResult
callBackMessageNonCallRelated| local: 301 |CallBackMessageNonCallRelatedArgument| CallBackMessageNonCallRelatedResult
callBackNonCallRelated local: 300 | CallBackNonCallRelatedArgument CallBackNonCallRelatedResult
camponCall local; 217 | CamponCallArgument CamponCallResult
cancelCallBack local: 302 | CancelCallBackArgument CancelCallBackResult

cancelCallBackMessage local; 303 | CancelCallBackMessageArgument CancelCallBackMessageResult
cancelTelephonyTones local; 231 | CancelTelephonyTonesArgument CancelTelephonyTonesResult
cDRNotification local: 360 | CDRNOotificationArgument CDRNotificationResult
cDRReport local: 361 | CDRReportArgument CDRReportResult
changeMonitorFilter local: 72 | ChangeMonitorFilterArgument ChangeMonitorFilterResult
changeSysStatFilter local: 206 | ChangeSysStatFilterArg ChangeSysStatFilterRes
clearCall local: 4 ClearCallArgument ClearCallResult
clearConnection local: 5 ClearConnectionArgument ClearConnectionResult
concatenateMessage local; 500 | ConcatenateMessageArgument ConcatenateMessageResult
conferenceCall local: 6 ConferenceCallArgument ConferenceCallResult
consultationCall local: 7 ConsultationCallArgument ConsultationCallResult
cSTAEventReport local: 21 CSTAEventReportArgument

dataCollected local: 343 | DataCollectedArgument DataCollectedResult
dataCollectionResumed local: 344 | DataCollectionResumedArgument DataCollectionResumedResult
dataCollectionSuspended local: 345 | DataCollectionSuspendedArgument DataCollectionSuspendedResult
dataPathResumed local: 118 | DataPathResumedArgument DataPathResumedResult
dataPathSuspended local; 116 | DataPathSuspendedArgument DataPathSuspendedResult
deflectCall local; 218 | DeflectCallArgument DeflectCallResult
deleteMessage local: 501 | DeleteMessageArgument DeleteMessageResult
detachMediaService local: 245 | DetachMediaServiceArgument DetachMediaServiceResult
dialDigits local: 219 | DialDigitsArgument DialDigitsResult
directedPickupCall local: 220 | DirectedPickupCallArgument DirectedPickupCallResult
escape local: 51 EscapeArgument EscapeResult

escapeRegister local: 365 | EscapeRegisterArgument EscapeRegisterResult
escapeRegisterAbort local: 366 | EscapeRegisterAbortArgument

escapeRegisterCancel local; 367 | EscapeRegisterCancelArgument EscapeRegisterCancelResult
fastData local: 119 | FastDataArgument FastDataResult

generateDigits local: 232 | GenerateDigitsArgument GenerateDigitsResult
generateTelephonyTones local: 233 | GenerateTelephonyTonesArgument GenerateTelephonyTonesResult
getAgentState local: 304 | GetAgentStateArgument GetAgentStateResult
getAuditoryApparatusinformation | local: 261 |GetAuditoryApparatusinformationArgument | GetAuditoryApparatusinformationResult
getAutoAnswer local; 305 | GetAutoAnswerArgument GetAutoAnswerResult
getAutoWorkMode local: 306 | GetAutoWorkModeArgument GetAutoWorkModeResult
getButtonInformation local: 262 | GetButtonlnformationArgument GetButtonInformationResult
getCallerIDStatus local: 307 | GetCallerIDStatusArgument GetCallerlDStatusResult
getDisplay local: 263 | GetDisplayArgument GetDisplayResult
getDoNotDisturb local: 308 | GetDoNotDisturbArgument GetDoNotDisturbResult
getForwarding local; 309 | GetForwardingArgument GetForwardingResult
getHookswitchStatus local: 264 | GetHookswitchStatusArgument GetHookswitchStatusResult
getLamplnformation local; 265 | GetLamplnformationArgument GetLamplnformationResult
getLampMode local; 266 | GetLampModeArgument GetLampModeResult
getLastNumberDialed local: 310 | GetLastNumberDialedArgument GetLastNumberDialedResult
getLogicalDevicelnformation local: 201 | GetLogicalDevicelnformationArgument GetLogicalDevicelnformationResult
getMessageWaitingIndicator local: 267 | GetMessageWaitingIndicatorArgument GetMessageWaitinglndicatorResult
getMicrophoneGain local: 268 | GetMicrophoneGainArgument GetMicrophoneGainResult
getMicrophoneMute local: 269 | GetMicrophoneMuteArgument GetMicrophoneMuteResult
getPhysicalDevicelnformation local: 202 | GetPhysicalDevicelnformationArgument GetPhysicalDevicelnformationResult
getRingerStatus local; 270 | GetRingerStatusArgument GetRingerStatusResult
getRouteingMode local: 311 | GetRouteingModeArgument GetRouteingModeResult

getSpeakerMute local; 271 | GetSpeakerMuteArgument GetSpeakerMuteResult
getSpeakerVolume local: 272 | GetSpeakerVolumeArgument GetSpeakerVolumeResult
getSwitchingFunctionCapabilities| local: 203 | GetSwitchingFunctionCapsArgument GetSwitchingFunctionCapsResult
getSwitchingFunctionDevices local: 204 | GetSwitchingFunctionDevicesArgument GetSwitchingFunctionDevicesResult
groupPickupCall local: 221 | GroupPickupCallArgument GroupPickupCallResult
holdCall local: 9 HoldCallArgument HoldCallResult

intrudeCall local; 222 | IntrudeCallArgument IntrudeCallResult
ioRegister local: 340 | IORegisterArgument IORegisterResult
ioRegisterAbort local; 341 | IORegisterAbortArgument

ioRegisterCancel local: 342 | IORegisterCancelArgument IORegisterCancelResult
joinCall local: 223 | JoinCallArgument JoinCallResult

makeCall local: 10 | MakeCallArgument MakeCallResult
makePredictiveCall local: 11 MakePredictiveCallArgument MakePredictiveCallResult
monitorStart local: 71 MonitorStartArgument MonitorStartResult
monitorStop local; 73 | MonitorStopArgument MonitorStopResult

parkCall local: 18 | ParkCallArgument ParkCallResult
playMessage local: 502 | PlayMessageArgument PlayMessageResult
privateDataVersionSelection local: 368 | PrivateDataVersionSelectionArgument PrivateDataVersionSelectionResult
queryVoiceAttribute local: 503 | QueryVoiceAttributeArgument QueryVoiceAttributeResult
reconnectCall local: 13 | ReconnectCallArgument ReconnectCallResult
recordMessage local: 511 | RecordMessageArgument RecordMessageResult
reposition local: 504 | RepositionArgument RepositionResult
requestSysStat local;: 210 | RequestSysStatArg RequestSysStatRes
reRouteRequest local: 32 | ReRouteRequestArgument

resume local: 505 | ResumeArgument ResumeResult
resumeDataCollection local: 346 | ResumeDataCollectionArgument ResumeDataCollectionResult
resumeDataPath local: 117 | ResumeDataPathArgument ResumeDataPathResult
retrieveCall local: 14 | RetrieveCallArgument RetrieveCallResult

review local: 506 | ReviewArgument ReviewResult
routeEndRequest local: 35 | RouteEndRequestArgument

routeRegister local: 248 | RouteRegisterArgument RouteRegisterResult
routeRegisterAbort local: 249 | RouteRegisterAbortArgument

routeRegisterCancel local; 250 | RouteRegisterCancelArgument RouteRegisterCancelResult
routeReject local; 36 | RouteRejectArgument

routeRequest local: 31 RouteRequestArgument

routeSelectRequest local: 33 | RouteSelectRequestArgument

routeUsedRequest local: 34 | RouteUsedRequestArgument

sendBroadcastData local: 114 | SendBroadcastDataArgument SendBroadcastDataResult
sendData local;: 112 | SendDataArgument SendDataResult
sendMulticastData local: 113 | SendMulticastDataArgument SendMulticastDataResult
sendStoredCDR local; 362 | SendStoredCDRArgument SendStoredCDRResult
sendUserInfo local: 234 | SendUserInfoArgument SendUserInfoResult
setAgentState local: 312 | SetAgentStateArgument SetAgentStateResult
setAutoAnswer local: 313 | SetAutoAnswerArgument SetAutoAnswerResult
setAutoWorkMode local: 314 | SetAutoWorkModeArgument SetAutoWorkModeResult
setButtonInformation local: 273 | SetButtonInformationArgument SetButtonlnformationResult
setCaller|DStatus local: 315 | SetCallerIDStatusArgument SetCallerIDStatusResult
setDisplay local: 274 | SetDisplayArgument SetDisplayResult
setDoNotDisturb local; 316 | SetDoNotDisturbArgument SetDoNotDisturbResult
setForwarding local: 317 | SetForwardingArgument SetForwardingResult

setHookswitchStatus local; 275 | SetHookswitchStatusArgument SetHookswitchStatusResult
setLampMode local; 276 | SetLampModeArgument SetLampModeResult
setMessageWaitinglIndicator local: 277 | SetMessageWaitinglndicatorArgument SetMessageWaitingIndicatorResult
setMicrophoneGain local: 278 | SetMicrophoneGainArgument SetMicrophoneGainResult
setMicrophoneMute local: 279 | SetMicrophoneMuteArgument SetMicrophoneMuteResult
setRingerStatus local: 280 | SetRingerStatusArgument SetRingerStatusResult
setRouteingMode local; 318 | SetRouteingModeArgument SetRouteingModeResult
setSpeakerMute local: 281 | SetSpeakerMuteArgument SetSpeakerMuteResult
setSpeakerVolume local; 282 | SetSpeakerVolumeArgument SetSpeakerVolumeResult
setVoiceAttribute local; 507 | SetVoiceAttributeArgument SetVoiceAttributeResult
singleStepConf local: 20 | SingleStepConfArgument SingleStepConfResult
singleStepTrans local: 50 | SingleStepTransArgument SingleStepTransResult
shapshotCall local: 75 | SnapshotCallArgument SnapshotCallResult
snapshotCallData local: 76 | SnapshotCallDataArgument

snapshotDevice local: 74 | SnapshotDeviceArgument SnapshotDeviceResult
snapshotDeviceData local: 77 | SnapshotDeviceDataArgument

startCDRTransmission local; 363 | StartCDRTransmissionArgument StartCDRTransmissionResult
startDataCollection local; 347 | StartDataCollectionArgument StartDataCollectionResult
startDataPath local: 110 | StartDataPathArgument StartDataPathResult

stop local: 508 | StopArgument StopResult
stopCDRTransmission local: 364 | StopCDRTransmissionArgument StopCDRTransmissionResult
stopDataCollection local: 348 | StopDataCollectionArgument StopDataCollectionResult
stopDataPath local; 111 | StopDataPathArgument StopDataPathResult

suspend local: 509 | SuspendArgument SuspendResult
suspendDataCollection local; 349 | SuspendDataCollectionArgument SuspendDataCollectionResult
suspendDataPath local;: 115 | SuspendDataPathArgument SuspendDataPathResult
swFunctionCapsChanged local: 212 | SwFunctionCapsChangedArg SwFunctionCapsChangedRes
swFunctionDevicesChanged local: 213 | SwFunctionDevicesChangedArg SwFunctionDevicesChangedRes
switchingFunctionDevices local: 205 | SwitchingFunctionDevicesArgument

synthesizeMessage local: 510 | SynthesizeMessageArgument SynthesizeMessageResult
systemRegister local; 207 | SystemRegisterArgument SystemRegisterResult
systemRegisterAbort local: 208 | SystemRegisterAbortArgument

systemRegisterCancel local; 209 | SystemRegisterCancelArgument SystemRegisterCancelResult
systemStatus local;: 211 | SystemStatusArg SystemStatusRes
transferCall local: 16 | TransferCallArgument TransferCallResult

NOTE: For all the of the above operations or information objects, the return error type is
ASNIT UniversalFailure.

Common CSTA Operations

Making a Call

One possible need with CSTA messaging is to send the PBX a message telling it to make a call and then to
retrieve the call id (a sequence of octets) for the resulting call from the response that the PBX sends back

to the client.

The code sample below shows how this operation can be done. The sample uses a method called
makeCall() within a class called CSTAEngine. The method accepts two arguments (the calling number and

the number to call) and returns a pointer to the call id octet sequence. If anything goes wrong, the method
simply returns NULL.

This code sample uses the following variable prefix conventions:

psz — Pointer to null-terminated string.

pach — Pointer to an array of chars (not necessarily null-terminated).
t — Structure or object instance.

pt — Pointer to a structure or object instance.

i— Integer.

If a variable ends with T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-call-connection-identifiers.h"
#include "CSTA-make-call.h"

#include "CSTA-device-identifiers.h"

#include "CSTA-ROSE-PDU-types.h"

#include "Remote-Operations-Information-Objects.h"

#include "asnlBerCppTypes.h"
#include "asnlCppTypes.h"
#include "ASN1TOctStr.h"

#include "CSTAEngine.h"
#include <memory.h>

These are the include directives that are necessary.

char *CSTAEngine::makeCall (char *pszCallingDevice, char
*pszCalledDevice)
{

ASN1BEREncodeBuffer tEncodeBuffer;

ASNIT MakeCallArgument tMakeCallArgument T;

ASN1C MakeCallArgument tMakeCallArgument C(tEncodeBuffer,
tMakeCallArgument T);

In this section the method is allocating an encode buffer, a data object for the argument for the Make Call
message, and a control object for the same argument.

tMakeCallArgument T.callingDevice.m.mediaCallCharacteristicsPresent =
0;

tMakeCallArgument T.callingDevice.deviceIdentifier.t =
T DevicelID deviceIdentifier dialingNumber;

tMakeCallArgument T.callingDevice.deviceldentifier.u.dialingNumber =
pszCallingDevice;

Here the method is populating information about the calling device. The method indicates (line 2) that the
calling device will be specified as a dialing number (an extension number or phone number, in other
words), and in line 3 it specifies what that number is.

tMakeCallArgument T.calledDirectoryNumber.deviceIdentifier.t =
T DevicelID deviceIdentifier dialingNumber;

tMakeCallArgument T.calledDirectoryNumber.deviceIdentifier.u.dialingNumb
er = pszCalledDevice;

Here, similarly, the method is specifying that the called number will be specified as a dialing number, and it
then specifies what that number is.

tMakeCallArgument T.autoOriginate = AutoOriginate::doNotPrompt;

Here the method is setting the piece of the Make Call Argument that will tell the PBX not to “prompt” the
calling device to go off-hook. How the PBX might do this “prompting” depends on the PBX and the phone
device; in some situations the device might ring; in others a light on the device might blink, etc. The
doNotPrompt setting means that the PBX will take the device off-hook without any manual intervention. If
the phone device is such that taking it off-hook electronically is not possible; e.g., it doesn't have a speaker,
then the exact handling of the Make Call message is dependent on the PBX.

int iLength = tMakeCallArgument C.Encode();
if (iLength < 0) return NULL;

Here the method is encoding the Make Call argument and checking to see if the encoding worked.

ASNIT CSTA ROSE PDU tROSEHeaderEnc T;

ASN1C CSTA ROSE PDU tROSEHeaderEnc C(tEncodeBuffer,
tROSEHeaderEnc T);

ASN1T CSTA ROSE PDU invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Make Call argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Make Call
argument.

The invoke object is used because the ROSE operation that is used to tell the PBX to make a call is
INVOKE.

tInvokeObject.m.argumentPresent = 1;
tInvokeObject.invokeId.t = T Invokeld present;
tInvokeObject.invokeld.u.present = 1;
tInvokeObject.opcode.t = T Code local;
tInvokeObject.opcode.u.local = 10;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Make Call argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the

invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 10, which is the opcode for Make Call.

tInvokeObject.argument.numocts = iLength;
tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Make Call argument into the invoke object.

tROSEHeaderEnc T.t = T CSTA ROSE PDU invoke;
tROSEHeaderEnc T.u.invoke = &tlInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

iLength = tROSEHeaderEnc_ C.Encode () ;
if (iLength < 0) return NULL;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Make Call argument.

At this point the Make Call argument is completely encoded. So the next step for this method is to send the
message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX
points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

ASN1BERDecodeBuffer tROSEDecodeBuffer (pachResponseFromPBX,
iResponseFromPBX) ;

ASNIT CSTA ROSE PDU tROSEHeaderDec T;

ASN1C CSTA ROSE PDU tROSEHeaderDec C (tROSEDecodeBuffer,
tROSEHeaderDec T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

int iStatus = tROSEHeaderDec C.Decode () ;
if (iStatus != 0) return NULL;

Here the method decodes the ROSE header and checks to see if the decoding worked.

if (tROSEHeaderDec T.t != T CSTA ROSE PDU returnResult) return NULL;

if (tROSEHeaderDec T.u.returnResult->result.opcode.t != T Code local)
return NULL;

if (tROSEHeaderDec T.u.returnResult->result.opcode.u.local != 10)

return NULL;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is a RETURN RESULT message. The second line checks to make sure that the
opcode associated with the response message is a local opcode. And the third line checks to make sure that
the opcode associated with the response message is the Make Call opcode.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeld field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

ASN1BERDecodeBuffer
tContentDecodeBuffer (tROSEHeaderDec T.u.returnResult-

>result.result.data, tROSEHeaderDec T.u.returnResult-
>result.result.numocts) ;

ASNIT MakeCallResult tMakeCallResult T;

ASN1C MakeCallResult tMakeCallResult C(tContentDecodeBuffer,
tMakeCallResult T);

Here the method is allocating objects needed to decode the actual content of the response message, as
opposed to the ROSE header. In this case the content is a Make Call Result message.

iStatus = tMakeCallResult C.Decode();
if (iStatus != 0) return NULL;

Here the method is decoding the contents of the response message and checking to see if the decoding
worked.

ASNIT ConnectionID tConnectionID = tMakeCallResult T.callingDevice;

Here the method is isolating the connection id of the placed call out of the Make Call Result message.

if (tConnectionID.t == T ConnectionID both)

{
ASNIT ConnectionID both *ptBoth = tConnectionID.u.both;
ASNIT CallID tCallID = ptBoth->callID;
char *pachCallID = new char [tCallID.numocts];
memcpy (pachCallID, tCallID.data, tCallID.numocts):;
return pachCalllD;

}

Here the method is handling the situation where the connection id contains both the call id and a device id.
For this sample the method is only interested in the call id. A copy on the heap is made so there are no
pointers to memory that may go out of scope.

if (tConnectionID.t == T ConnectionID calllID)

{
ASNIT CallID *ptCallID = tConnectionID.u.callID;
char *pachCallID = new char [ptCallID->numocts];
memcpy (pachCallID, ptCallID->data, ptCallID->numocts);
return pachCalllID;

Here the method is handling the situation where the connection id contains just the call id. A copy on the
heap is made so there are no pointers to memory that may go out of scope.

return NULL;

The one remaining possibility is that the connection id just contains a device id. In this case what the
method wants, the call id, isn't there, so the method returns NULL.

Returning the pointer to the ASN1T ConnectionlD structure itself is also possible. As with the call id, a
copy of the connection id should be made and a pointer to that copy returned. Such a copy operation is not
as trivial as it may sound, as the ASN1T_ConnectionID structure can have multiple levels of nested
structure pointers. ASN1C can generate copy functions for all generated structures and objects by adding -
gencopy to its command line (in the makefile or the Visual Studio project). If copy functions are

generated, the function to copy an ASN1T_ConnectionlID instance can be invoked to do a complete copy of
the structure.

Monitoring

A frequent need in CSTA applications is to monitor one or more telephony devices. There are three parts
to monitoring: starting a monitor, receiving monitor events, and stopping a monitor.

Starting a Monitor

The code sample below shows how a monitor can be started. The sample uses a method called
startMonitor() within a class called CSTAEngine. The method accepts one argument (the extension
number to monitor) and returns a pointer to the monitor cross reference id (a sequence of bytes assigned by
the PBX to identify the monitor). If anything goes wrong, the method simply returns NULL.

This code sample uses the following variable prefix conventions:

psz — Pointer to null-terminated string.

pach — Pointer to an array of chars (not necessarily null-terminated).
t — Structure or object instance.

pt — Pointer to a structure or object instance.

i— Integer.

If a variable ends with T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"

#include "CSTA-monitor-start.h"

#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-ROSE-PDU-types.h"

#include "asnlBerCppTypes.h"
#include "asnlCppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary.

ASN1T MonitorCrossRefID *CSTAEngine::startMonitor (char
*pszDeviceToMonitor)
{

ASN1BEREncodeBuffer tEncodeBuffer;

ASNIT MonitorStartArgument tMonStartArgument T;

ASNIC MonitorStartArgument tMonStartArgument C(tEncodeBuffer,
tMonStartArgument T);

In this section the method is allocating an encode buffer, a data object for the argument for the Monitor
Start message, and a control object for the same argument.

ASNIT DevicelID tDevice;
tDevice.deviceIdentifier.t =

T DevicelID deviceIdentifier dialingNumber;
tDevice.deviceIdentifier.u.dialingNumber = pszDeviceToMonitor;

Here the method is setting up a structure that will be needed to specify the number that is being called. The
method is indicating that the device to monitor will be specified as a dialing number (an extension number
or phone number, in other words), and it specifies what that number is.

tMonStartArgument T.monitorObject.t = T CSTAObject deviceObject;
tMonStartArgument T.monitorObject.u.deviceObject = &tDevice;

Here the method is tying the object for the Monitor Start argument's data to the device structure that it just
populated.

int iLength = tMonStartArgument C.Encode();
if (iLength < 0) return NULL;

Here the method is encoding the Monitor Start argument and checking to see if the encoding worked.

ASNIT CSTA ROSE PDU tROSEHeaderEnc T;

ASN1C CSTA ROSE PDU tROSEHeaderEnc C (tEncodeBuffer,
tROSEHeaderEnc T);

ASNIT CSTA ROSE PDU invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Monitor Start argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Monitor
Start argument.

tInvokeObject.m.argumentPresent = 1;
tInvokeObject.invokeId.t = T Invokeld present;
tInvokeObject.invokeId.u.present = 1;

tInvokeObject.opcode.t = T Code local;
tInvokeObject.opcode.u.local = 71;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Monitor Start argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the

invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 71, which is the opcode for Monitor Start.

tInvokeObject.argument.numocts = iLength;
tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Monitor Start argument into the invoke object.

tROSEHeaderEnc T.t = T CSTA ROSE PDU invoke;
tROSEHeaderEnc_T.u.invoke = &tInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

iLength = tROSEHeaderEnc_ C.Encode () ;
if (iLength < 0) return NULL;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Monitor Start argument.

At this point the Monitor Start argument is completely encoded. So the next step for this method is to send
the message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX
points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

ASN1BERDecodeBuffer tROSEDecodeBuffer (pachResponseFromPBX,
iResponseFromPBX) ;

ASNIT CSTA ROSE PDU tROSEHeaderDec T;

ASN1C CSTA ROSE PDU tROSEHeaderDec C (tROSEDecodeBuffer,
tROSEHeaderDec T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

int iStatus = tROSEHeaderDec C.Decode () ;
if (iStatus != 0) return NULL;

Here the method decodes the ROSE header and checks to see if the decoding worked.

if (tROSEHeaderDec T.t != T CSTA ROSE PDU returnResult) return NULL;

if (tROSEHeaderDec T.u.returnResult->result.opcode.t != T Code local)
return NULL;

if (tROSEHeaderDec T.u.returnResult->result.opcode.u.local != 71)

return NULL;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is a RETURN RESULT message. The second line checks to make sure that the
opcode associated with the response message is a local opcode. And the third line checks to make sure that
the opcode associated with the response message is the Monitor Start opcode.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeld field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

ASN1BERDecodeBuffer
tContentDecodeBuffer (tROSEHeaderDec T.u.returnResult-
>result.result.data, tROSEHeaderDec T.u.returnResult-
>result.result.numocts) ;

ASNIT MonitorStartResult tMonStartResult T;

ASNIC MonitorStartResult tMonStartResult C(tContentDecodeBuffer,
tMonStartResult T);

Here the method is allocating objects needed to decode the actual content of the response message, as
opposed to the ROSE header. In this case the content is a Monitor Start Result message.

iStatus = tMonStartResult C.Decode();
if (istatus != 0) return NULL;

Here the method is decoding the contents of the response message and checking to see if the decoding
worked.

ASNIT MonitorCrossRefID tMonCrossRef =
tMonStartResult T.crossRefldentifier;

ASN1T MonitorCrossRefID *ptReturnValue = new
ASN1T MonitorCrossRefID (tMonCrossRef);

return ptReturnValue;

Here the method is extracting the monitor cross reference id from the result message data. The method
makes a copy of this cross reference id on the heap and returns a pointer to the copy so the caller won't
have a pointer to memory that might go out of scope.

Receiving Monitor Events

When a monitor is established against a device, the PBX sends event report messages to the client software.
For example, lifting the receiver of a monitored device usually causes at least one event report message to
be sent by the PBX.

The code sample below shows how an event report message can be handled. The sample uses a method
called handleEvent() within a class called CSTAEngine. The method accepts two arguments (a pointer to
the bytes of an encoded event report message and the length of the message). So the method assumes that
the client code has a mechanism set up to receive event report messages from the PBX using a
communication mechanism like TCP/IP. For the purposes of this sample any events other than Established
events are ignored.

This code sample uses the following variable prefix conventions:

psz — Pointer to null-terminated string.

pach — Pointer to an array of chars (not necessarily null-terminated).
t — Structure or object instance.

pt — Pointer to a structure or object instance.

i — Integer.

If a variable ends with T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"

#include "CSTA-monitor-start.h"

#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-event-report-definitions.h"
#include "CSTA-established-event.h"

#include "CSTA-ROSE-PDU-types.h"
#include "asnlBerCppTypes.h"
#include "asnlCppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary. An assumption is being made here that this
CSTAEngine class is the same class that has the previously discussed startMonitor() method, so some of
these include directives pertain to that method instead of the handleEvent() method.

void CSTAEngine::handleEvent (OSOCTET *pachEventMessage, int
iEventMessage)
{
ASN1BERDecodeBuffer tROSEDecodeBuffer (pachEventMessage,
iEventMessage) ;
ASN1T CSTA ROSE PDU tROSEHeaderDec T;
ASN1C CSTA ROSE PDU tROSEHeaderDec C (tROSEDecodeBuffer,
tROSEHeaderDec T);

Here the method is allocating some objects to decode the ROSE header of the event report message. The
first line allocates a decode buffer. The second line allocates a data object. And the third line allocates a
control object.

int iStatus = tROSEHeaderDec C.Decode () ;
if (iStatus != 0) return;

Here the method decodes the ROSE header and checks to see if the decoding worked.

if (tROSEHeaderDec T.t != T CSTA ROSE PDU invoke) return;
if (tROSEHeaderDec T.u.invoke->opcode.t != T Code local) return;
if (tROSEHeaderDec T.u.invoke->opcode.u.local != 21) return;

Here the method does a few sanity checks against the decoded ROSE header. The first line checks to make
sure that the message is an INVOKE message (CSTA event report messages are INVOKE messages
instead of RETURN RESULT messages).

The second line checks to make sure that the opcode associated with the message is a local opcode. Notice
that the choice within the ROSE header object's union is the “invoke” member instead of the “returnResult”
member.

And the third line checks to make sure that the opcode associated with the response message is the event
report message opcode.

Since event report messages are INVOKE messages, the invoke id is most likely not going to be the same
as the invoke id of the Monitor Start message that was sent to start the monitor.

ASN1BERDecodeBuffer tContentDecodeBuffer (tROSEHeaderDec T.u.invoke-
>argument.data, tROSEHeaderDec T.u.invoke->argument.numocts);

ASNIT cerd CSTAEventReportArgument tEventReportArg T;

ASN1C cerd CSTAEventReportArgument
tEventReportArg C(tContentDecodeBuffer, tEventReportArg T);

Here the method is allocating objects needed to decode the actual content of the message, as opposed to the
ROSE header. In this case the content is an Event Report Argument.

iStatus = tEventReportArg C.Decode();
if (iStatus != 0) return;

Here the method is decoding the contents of the message and checking to see if the decoding worked.

ASNIT cerd EventSpecificInfo tEventSpecificInfo =
tEventReportArg T.eventSpecificInfo;

if (tEventSpecificInfo.t !=
T cerd EventSpecificInfo callControlEvents) return;

Here the method is checking to see if the event is one of the events in the group known as call events. The
Established event is a call event.

ASNIT cerd CallControlEvents *ptCallEvent =
tEventSpecificInfo.u.callControlEvents;

if (ptCallEvent->t != T cerd CallControlEvents established) return;

ASN1T EstablishedEvent *ptEstablishedEvent = ptCallEvent-
>u.established;

Here the method checks to make sure the event is an Established event (line 2). Then the method isolates
the information that describes this event.

At this point the variable ptEstablishedEvent points to the information about the Established event, and the
method can do whatever it needs to do with that information.

Stopping a Monitor

The code sample below shows how a monitor can be stopped. The sample uses a method called
stopMonitor() within a class called CSTAEngine. The method accepts one argument (the cross reference id
of the monitor to stop) and returns O for success or -1 for failure.

This code sample uses the following variable prefix conventions:

psz — Pointer to null-terminated string.

pach — Pointer to an array of chars (not necessarily null-terminated).
t — Structure or object instance.

pt — Pointer to a structure or object instance.

i— Integer.

If a variable ends with _T, the variable refers to an ASN1C-generated data object. If a variable ends with
_C, the variable refers to an ASN1C-generated control object.

#include "CSTA-status-reporting.h"

finclude "CSTA-monitor-start.h"

#include "CSTA-monitor-stop.h"

#include "CSTA-device-identifiers.h"
#include "CSTA-switching-function-objects.h"
#include "CSTA-event-report-definitions.h"
#include "CSTA-established-event.h"

#include "CSTA-ROSE-PDU-types.h"

#include "asnlBerCppTypes.h"
#include "asnlCppTypes.h"
#include "ASN1TOctStr.h"
#include "osSysTypes.h"

#include "CSTAEngine.h"

These are the include directives that are necessary. An assumption is being made here that this
CSTAEngine class is the same class that has the previously discussed startMonitor() and handleEvent()
methods, so some of these include directives pertain to those methods instead of the stopMonitor() method.

int CSTAEngine::stopMonitor (ASN1T MonitorCrossRefID *ptCrossReflID)
{

ASN1BEREncodeBuffer tEncodeBuffer;

ASNIT MonitorStopArgument tMonStopArgument T;

ASNIC MonitorStopArgument tMonStopArgument C(tEncodeBuffer,
tMonStopArgument T);

In this section the method is allocating an encode buffer, a data object for the argument for the Monitor
Stop message, and a control object for the same argument.

tMonStopArgument T.crossRefldentifier = *ptCrossReflD;

Here the method is populating the monitor stop argument with the cross reference id of the monitor to stop.

int iLength = tMonStopArgument C.Encode();
if (iLength < 0) return -1;

Here the method is encoding the Monitor Stop argument and checking to see if the encoding worked.

ASNIT CSTA ROSE PDU tROSEHeaderEnc T;

ASN1C CSTA ROSE PDU tROSEHeaderEnc C (tEncodeBuffer,
tROSEHeaderEnc T);

ASNIT CSTA ROSE PDU invoke tInvokeObject;

Every CSTA message is wrapped within a ROSE header, so here the method is allocating the objects and
structures needed to encode the header. Note that the control object for the ROSE header is constructed
using the same encode buffer instance that was used for the control object for the Monitor Stop argument.
The same buffer is used because the ROSE header will wrap; i.e, include, the information in the Monitor
Stop argument.

tInvokeObject.m.argumentPresent = 1;
tInvokeObject.invokeId.t = T Invokeld present;
tInvokeObject.invokeId.u.present = 1;
tInvokeObject.opcode.t = T Code local;
tInvokeObject.opcode.u.local = 73;

Here the method is populating the invoke object. The first line indicates that an argument will be present in
the ROSE header. This argument will be the encoded Monitor Stop argument.

The second line indicates that an invoke id will be present in the header. The invoke id is any number to
identify this instance of the message.that the PBX will accept.

The third line sets the invoke id to 1. The invoke id should be different for each CSTA message sent to the
PBX, though wrapping back to 1 after some maximum value will likely be necessary. In some cases the

invoke id can contain a couple of pieces of information, again depending on what the PBX will accept.

The fourth line indicates that the opcode that will be used is a local opcode; i.e., defined in the CSTA
ASN.1 specification, as opposed to a global opcode.

The fifth line sets the opcode to 73, which is the opcode for Monitor Stop.

tInvokeObject.argument.numocts = iLength;
tInvokeObject.argument.data = (OSOCTET *) tEncodeBuffer.getMsgPtr();

Here the method is setting the already-encoded Monitor Stop argument into the invoke object.

tROSEHeaderEnc T.t = T CSTA ROSE PDU invoke;
tROSEHeaderEnc T.u.invoke = &tInvokeObject;

Here the method “tells” the ROSE header that the operation will be an INVOKE operation and sets the
invoke object to the header.

iLength = tROSEHeaderEnc_ C.Encode();
if (iLength < 0) return -1;

Here the method encodes the ROSE header and checks to see if the encoding worked. The encoded ROSE
header will include the bytes of the already-encoded Monitor Stop argument.

At this point the Monitor Stop argument is completely encoded. So the next step for this method is to send
the message to the PBX, using whatever mechanism is necessary (e.g., TCP/IP). We will assume that the
message has been sent and a response received. We will further assume that pachResponseFromPBX
points to the bytes of the encoded response message, and that iResponseFromPBX contains the length of
the response message.

ASN1BERDecodeBuffer tROSEDecodeBuffer (pachResponseFromPBX,
iResponseFromPBX) ;

ASNIT CSTA ROSE PDU tROSEHeaderDec T;

ASNIC CSTA ROSE PDU tROSEHeaderDec C(tROSEDecodeBuffer,
tROSEHeaderDec T);

Here the method is allocating some objects to decode the ROSE header of the response. The first line
allocates a decode buffer. The second line allocates a data object. And the third line allocates a control
object.

int iStatus = tROSEHeaderDec C.Decode () ;
if (iStatus != 0) return -1;

Here the method decodes the ROSE header and checks to see if the decoding worked.

if (tROSEHeaderDec T.t != T CSTA ROSE PDU returnResult) return -1;
return 0;

Here the method checks to make sure that the message is a RETURN RESULT message, which indicates a
successful operation. In this case there is no other information in the response message that's needed, so
the method then simply returns with success status.

The method could also check the invoke id of the result message at this point. The invoke id is contained
in the invokeld field of returnResult. The invoke id of a result message should be the same as the invoke id
of the original INVOKE message.

	CSTA Phase 3 C++ API Evaluation Kit for Windows
	User’s Guide
	Objective Systems, Inc. June 2019

	Introduction
	Contents of the Package
	Getting Started
	CSTA Explicit Association
	Encoding CSTA Messages with ROSE Header
	Encoding a CSTA message
	1. Encoding a ROSE Header

	Decoding CSTA Messages
	Table 1: Operation Table for CSTA phase 3
	Information Object
	Operation
	Operation Invoke type
	Operation Result type

	Common CSTA Operations
	Making a Call
	Monitoring
	Starting a Monitor
	Receiving Monitor Events
	Stopping a Monitor

