
V2X ASN.1 Python

 Encode/Decode API

User’s Guide

Objective Systems, Inc. February 2022

Introduction
The Objective Systems V2X Python API is a wrapper around the Objective Systems V2X C++ API.
The API is implemented in Python and depends on the V2X C++ API shared library. It is compatible
with Python 2.7 and Python 3.x. Due to the use of a shared library, the Python O/S and architecture
must match the V2X API O/S and architecture (e.g. using Python for Windows 32-bit requires using the
shared library from the Windows 32-bit V2X package).

As provided, the Python wrapper uses the v2xasn1_j2735_202007 and v2xasn1_etsi shared libraries.
Refer to the V2X ASN.1 C++ User Guide for details on the specification versions supported by these
libraries and, hence, by the Python wrapper. You can likely modify the Python source to use other
versions of the J2735 or ETSI libraries, but we have not tested this.

The API provides simple function calls that can used to convert binary V2X messages encoded
according to the Packed Encoding Rules (PER) to JSON and XML and vice versa. It supports SAE
J2735 MessageFrame messages and the following ETSI ITS messages: CAM, DENM, SPATEM,
MAPEM, IVIM, SREM, and SSEM.

This document contains reference documentation for the API as well as simple examples for calling the
API to convert messages.

Changes since v74300
Starting in v74301, the supported revision of SAE J2735 was changed to 202007 (it had been 201603).
This also means that the Python wrapper is now referring to a different shared library than previously.

Changes since v73400
Starting in v73401, the return type for the conversion methods (e.g. CAM.from_json), when there is an
error, is now a tuple instead of an int. The tuple contains the integer error code and the error text. The
conversion methods will no longer print out the error text to standard output.

Changes since v73300
The Python wrapper was formerly provided as a binary extension, dependent on Boost.Python, and
supporting only Python 2.7. Since the wrapper is no longer provided as a binary extension, there are
some slight changes in the requirements for using it (e.g., there is no longer a .pyd file to add to the
path). However, the osys.v2x Python module is the same, so client code should not require any
changes.

Package Contents
The V2X API installation has the following structure:

v2x_api_<version>
 +- doc
 +- python
 | +- src
 | +- osys
 +- sample
 +- python

<version> would be replaced with a 5-digit version number and <config> by a configuration identifier.
The first 3 digits of the version number are the ASN1C version used to generate the API and the last
two are a sequential number.

For example, v2x_api_v74002 would be the third version generated with the ASN1C v7.4.0 compiler.

The purpose and contents of the various subdirectories are as follows:

 python/src – Contains the folder hierarchy for the Python wrapper source code. This folder
should be in your PYTHONPATH.

 doc – Contains this document.

 sample – Contains a sample Python program that illustrates how to use the API. Sample
MessageFrame messages are also provided.

Getting Started
This package is delivered as a zipped archive (.zip) or a tar-gzipped archive (.tar.gz) that should be
unpacked in the same directory structure as the already-installed V2X C++ API. The libraries needed

to use the API are stored in the lib subdirectories.

The sample program shows how to use the API to convert from JSON and XML to hexadecimal text

(or binary output) and vice versa. A script is provided (conv.sh or conv.bat) to show how to set

the environment variables and to illustrate some command line options.

Windows
Windows users may use one of several methods to ensure that the DLLs are loaded on startup:

1. Place the v2xasn1_j2735_202007.dll, and v2xasn1_etsi.dll library files in a

directory on the system-wide path. You don't necessarily need both shared libraries; you only
need the one(s) corresponding to the set of specifications you are working with. Note that for
Python 3.8, this does not include the PATH, but does include folders such as
Windows\System32. (See https://docs.python.org/3/whatsnew/3.8.html#bpo-36085-whatsnew)

2. Set PATH. (Starting with Python 3.8, this does not work.) Update the path to include the
directory in which the DLLs are loaded. From the command-line, use the set command. For
example:

https://docs.python.org/3/whatsnew/3.8.html#bpo-36085-whatsnew

set PATH=%PATH%;c:\<v2x_root_dir>\debug\lib

3. Set environment variable V2XDLLPATH to the directory in which the DLLs are located.

4. Use os.add_dll_directory (new in Python 3.8) to add a folder to the DLL search path.

The PYTHONPATH variable will also need to be set to point to the directory that contains the osys

package folder. For example:

set PYTHONPATH=%PYTHONPATH%;c:\<v2x_root_dir>\python\src

In the case of a limited binary library (which includes the evaluation edition), it may be necessary to

assign another environment variable to allow the license file to be located. The ACLICFILE

environment variable should be set to the full pathname to the osyslic.txt file that was provided

with the product. For example, if you place the license file in the root directory of the installation, the
following variable would need to be defined:

set ACLICFILE=c:\<v2x_root_dir>\osyslic.txt

Linux
Linux users may use one of the following methods to ensure that the shared libraries are loaded on
startup:

1. Place the libv2xasn1_j2735_202007.so, and libv2xasn1_etsi.so library files

in a directory searched by ld; a subdirectory of /usr/lib is a common location. Copying

the files into these locations usually requires super-user privileges. You don't necessarily need
both shared libraries; you only need the one(s) corresponding to the set of specifications you are
working with.

2. Export the LD_LIBRARY_PATH environment variable prior to calling the application:

export LD_LIBRARY_PATH=${HOME}/<v2x_root_dir>/debug/lib

3. Export the V2XDLLPATH environment variable to the directory in which the DLLs are located.

The PYTHONPATH variable will also need to be set to point to the directory that contains the osys

package folder. For example:

export PYTHONPATH=${PYTHONPATH}:${HOME}/<v2x_root_dir>/python/src

As with the Windows kit, limited binary libraries will require setting the ACLICFILE environment

variable. For example:

export ACLICFILE=$HOME/<v2x_root_dir>/osyslic.txt

Mac OS X
Mac OS X users may use one of the following methods to ensure that the shared libraries are loaded on
startup:

1. Place the libv2xasn1_j2735_202007.dylib, and libv2xasn1_etsi.dylib

library files in a directory that is searched for these files; the /usr/lib directory usually

works. Copying the files into these locations usually requires super-user privileges. You don't
necessarily need both shared libraries; you only need the one(s) corresponding to the set of
specifications you are working with.

2. Export the DYLD_LIBRARY_PATH environment variable prior to calling the application:

export DYLD_LIBRARY_PATH=${HOME}/<v2x_root_dir>/debug/lib

3. Export the V2XDLLPATH environment variable to the directory in which the DLLs are located.

The PYTHONPATH variable will also need to be set to point to the directory that contains the osys

package folder. For example:

export PYTHONPATH=${PYTHONPATH}:${HOME}/<v2x_root_dir>/python/src

As with the Windows kit, limited binary libraries will require setting the ACLICFILE environment

variable. For example:

export ACLICFILE=$HOME/<v2x_root_dir>/osyslic.txt

Using the Sample Program
The provided sample program, v2x_conv.py, illustrates how to convert messages from text formats

(hexadecimal, JSON, and XML) to binary and vice versa. A batch file (conv.bat) or shell script

(conv.sh) is included to help set the environment variables described above.

Help on how to use the application may be obtained by running the application from the command line

with the -h switch:

Usage:

 v2x_conv.py <-j | -x | -b> [-o <output file>] [--type=<MessageFrame | CAM |
DENM>]
 <input file>

 Where:

 -j Converts the <input file> to JSON, assuming it is binary.
 This is the default behavior.
 -x Converts the <input file> to XML, assuming it is binary.
 -b Converts the <input file> to binary; specify -j or -x to
 convert from JSON or XML. (JSON is default.) If the
 output file is not specified, an ASCII representation is
 printed to standard output.

 -o Outputs the content to <output file>. Standard output is the
 default output.
 -h This help.

 --hex Treats the input file as a hexadecimal text file, converting
 it first to binary and then to the specified output
 format.

 --type=<type> Treats the input message as one of the three listed PDU data
 types in the V2X specifications: MessageFrame, CAM, or
 DENM. By default, the MessageFrame PDU is assumed.

 For example:

 test.py -jb -o message.dat message.json

 or

 test.py -b -o message.dat message.json

 converts the input file message.json to a binary file message.dat,
 assuming it is a MessageFrame data type. An equivalent set of options is

 test.py -j message.dat

 converts the input file message.dat to JSON, outputting it to standard
 output.

 test.py -x -o message.xml --type=CAM message.dat

 converts the input file message.dat to XML, outputting it to message.xml.
 The input PDU type is assumed to be a CAM message.

Sample data are provided with the program for the BasicSafetyMessage, CAMMessage, and
DENMMessage types.

API Reference
The V2X Python classes are located inside of the osys.v2x package.

None of the classes is instantiable; instead they provide class methods for performing conversions to

and from text and binary formats. Help text is available through the usual help(classname)

functions in Python. The help text is reproduced here:

Help on module osys.v2x in osys:

NAME
 osys.v2x - osys.v2x

DESCRIPTION
 This module acts as a wrapper around the C++ V2X DLL. It provides classes
 that enable conversion between binary and text representations of V2X messages.

 There are two C++ shared libraries that provide access to the V2X
functionality.
 The first is for SAE J2735 MessageFrame messages, and is named

 "v2xasn1_j2735_202007". The second is for ETSI messages and is named
 "v2xasn1_etsi".
 This module is designed so that only the library being used is required to be
 present.

 The conversion functionality is implemented in one class per message type,
 in class methods. The class methods are consistent across all types, see
 the documentation for _Message. The class methods are:
 to_json
 from_json
 to_xml
 from_xml.
 The classes are:
 MessageFrame (J2735 202007)
 CAM
 DENM
 SPATEM
 MAPEM
 IVIM
 SREM
 SSEM

CLASSES
 _Message(builtins.object)
 CAM
 DENM
 IVIM
 MAPEM
 MessageFrame
 SPATEM
 SREM
 SSEM

 class CAM(_Message)
 | The CAM class. ETSI EN 302 637-2.
 |
 | The CAM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | CAM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of

 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class DENM(_Message)
 | The DENM class. ETSI EN 302 637-3.
 |
 | The DENM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | DENM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class IVIM(_Message)
 | The IVIM class. ETSI TS 103 301.
 |
 | The IVIM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | IVIM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class MAPEM(_Message)
 | The MAPEM class. ETSI TS 103 301.
 |
 | The MAPEM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | MAPEM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type

 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class MessageFrame(_Message)
 | The MessageFrame class. SAE J2735 202007.
 |
 | The MessageFrame class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | MessageFrame
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of

 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class SPATEM(_Message)
 | The SPATEM class. ETSI TS 103 301.
 |
 | The SPATEM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | SPATEM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class SREM(_Message)
 | The SREM class. ETSI TS 103 301.
 |
 | The SREM class has no constructor: rather it offers four functions

 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | SREM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class SSEM(_Message)
 | The SSEM class. ETSI TS 103 301.
 |
 | The SSEM class has no constructor: rather it offers four functions
 | for converting messages from JSON or XML to a binary buffer and
 | vice versa.
 |
 | Method resolution order:
 | SSEM
 | _Message
 | builtins.object
 |
 | Class methods inherited from _Message:
 |
 | from_json(json_str, verbose=True) from builtins.type
 | Returns the binary encoding (as a Python buffer) of an input
 | JSON document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | from_xml(xml_str, verbose=True) from builtins.type

 | Returns the binary encoding (as a Python buffer) of an input
 | XML document or a tuple consisting of an error code (int) and an
 | error message (str)).
 |
 | to_json(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the JSON representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | to_xml(dat, nbytes, verbose=True) from builtins.type
 | Returns a Python buffer containing the XML representation of
 | the input binary MessageFrame or a tuple consisting of an error code
 | (int) and an error message (str)).
 |
 | --
 | Data descriptors inherited from _Message:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

API Example: Converting JSON to Hex Text
Included in this package are sample data for a BasicSafetyMessage message. This is encoded as

a MessageFrame PDU type, and so it corresponds to the v2x.MessageFrame class.

The following code might be used to convert the JSON message into a hexadecimal representation of
the binary output:

from osys import v2x
import binascii

import the JSON text from the input file
jstr = open(‘message.json’, ‘r’).read()

convert the JSON text into a Python buffer
data = v2x.MessageFrame.from_json(jstr)

convert the buffer data into a hex string
hex = binascii.hexlify(data)

finally, write it to a file
open(‘message.hex’, ‘wb’).write(hex)

The conversion to hex is performed by the built-in binascii module. To convert XML to

hexadecimal text simply requires changing the from_json method call to from_xml.

API Example: Converting Hex Text to JSON
We use the same sample data as above from the BasicSafetyMessage.

from osys import v2x

import binascii

import the hexadecimal text from the input file
hstr = open(‘message.hex’, ‘r’).read()

convert the hexadecimal text to binary
data = binascii.unhexlify(hstr)

convert the binary data to JSON
jstr = v2x.MessageFrame.to_json(data)

write the JSON data to a file
open(‘message.json’, ‘w’).write(jstr)

The conversion from hex is performed by the built-in binascii module. A conversion to XML

simply requires changing the to_json method call to to_xml.

	V2X ASN.1 Python
	Encode/Decode API
	User’s Guide
	Introduction
	Changes since v74300
	Changes since v73400
	Changes since v73300
	Package Contents
	Getting Started
	Windows
	Linux
	Mac OS X
	Using the Sample Program

	API Reference
	API Example: Converting JSON to Hex Text
	API Example: Converting Hex Text to JSON

